
I am: Senior Programmer,

Currently developing - 4 Player Co-op Combat/Action RPG
Using Unreal Engine



The Unreal Networking 
Model

Thaddaeus Frogley

I am: Senior Programmer,

Currently developing - 4 Player Co-op Combat/Action RPG
Using Unreal Engine



About This Talk

Implementing Shared Reality

Game State & Object Model

Not: TCP/UDP, packets, protocols, or 
platform/hardware topics.

This talk is all about how programmers can give two or more people, sat on opposite sides of the world, the 
impression they are sharing an experience, a common environment, where their actions have consequences, be it 
in co-operation or in competition - that they are in the same place seeing the same things.

It is about how we can model the details of that experience using a high level programming language, and how we 
keep those separate game states in sync.



What is Unreal

Epic Games’ Licensed Game Engine 
Technology (Unreal Engine 3)

PC, PS3, Xbox360

Unreal, UT, Gears of War

I’m going to talk about Unreal, because it is a game engine that provides an interesting, powerful, flexible 
framework & toolset for doing that job.

You don’t necessarily need to be using Unreal to benefit from this talk.  Learning about how this problem is solved 
by other people may lead you towards improvements to your own custom solutions as well.  

Keep in mind that I am not an official representative of Epic, just an employee of a licensee.  My opinions are my 
own.

Its important to understand that although much of the game logic in an Unreal Game is written in the Unreal 
scripting language, which has support for networking, the language and engine just provide the framework.  
Writing game code in UnrealScript does not mean it is networked “for free”.  Deciding how objects you create work 
over the network is your job as a programmer.  Not doing so up front will result in many headaches at the end.



Multi-player...

Single Player Games

Split Screen Multiplayer

P2P Network

Client/Server

UnReal’s “generalised client-server model”

When considering how multiplayer works with the unreal model we should look quickly at how distributed players 
introduces new problems to solve, and how epic have arrived at their solution.

With single player games there is a single game model being seen by a single player - we can have a class “model, 
controller, view” structure, and there is no problem to solve.

With split-screen-multiplayer there is still only a single model, the only difference is that the model will be viewed 
from multiple perspectives.  With model correctly de-coupled from view and controller, this transition is relativly 
simple.  

Once you genuinely have multiple participants, with separately stored game states, you need to have a scheme for 
communicating to keep the models in sync, the two distinct approaches are:
 * P2P - which I will quickly talk about on the (NEXT SLIDE)
 * And Client/Sever - (FOLLOWING SLIDE)
The unreal model is a generalised C/S Model - (which is the REST OF THE TALK)



Peer-to-Peer
MAZE, Doom, Duke Nukem, 
Magic & Mayhem...

Start and stay strictly 
synchronised

Fixed frame rate / lock-
step ticks

The first P2P game (MAZE) was made in the early 70s, at NASA - two machines linked together, each one sending 
out it’s players position.

In nontrivial applications, just sending positions isn’t enough, since other game state changes happen depending 
on the players actions, so it is common with p2p systems for each machine / game instance to collects it’s player 
input, distributes it to all participants, then once all input is gathered from all players the game model is stepped, 
and the process is repeated.

So game state is kept in sync, by synchronising all input, and keeping the game model deterministic.  

This means frame rate (or rather, user input processing) is linked to ping, so how responsive the game feels to the 
players input is dependant on network responsiveness.  Even on the fastest connection, every user is slowed down 
to the pace of the one on the slowest hardware.

LAN gaming.



Server-Client

MUD, Quake, UT, MMOs...

Join at anytime

Client framerate not 
limited by network speed

The first, or one of the first, multiplayer games using a server/client architecture was Dr Richard Bartle’s MUD, 
created in the late 70s, at Essex University.

With an ultra-thin client such as you’d have for a text based multi-user-dungeon the game state is only really 
modelled in one location - on the server, the the server tells each client exactly what to display.  This isn’t much 
different to the single player or split screen multiplayer we spoke of earlier.  The next step from that, needed to 
support graphical games, was to send game state from which the players view point could be rendered on the 
client.

Quake, and later UT, however, took this concept, and extended it to include Client Side simulation, so that the 
server would distribute not only the positions of the other players to but their velocities, and allowing 
interpolation & extrapolation of movement.

With this in place the stage was set for allowing players some level of autonomy over their movement, giving the 
“lag free” control FPS plays now expect.



Key Concepts

Participants

Unreal Object Model

Actor Relevancy

Actor Roles

Before I move on to the details of how this is managed with UnReal’s generalised client/server model, I’d like to 
just go over some of the key concepts and terminology used by Unreal Engine.

Some of this info might seem a bit fragmented and like I’m jumping around  without going into details, but hopefully it’ll all 
come together by the time I’ve finished.

Once I’ve summarised these 4 key concepts I’ll explain the actual communication tools used to keep the game 
models in sync.



Participants

First of all, we have participants.

The first participant is always the server.  The server is the definitive, or authoritative instance of the game world.  
Where different machines disagree, the server is the one that is always assumed to be correct.  Furthermore, the 
server has additional workload in this model, and is of course, the hub for all communication.
---
All other participants in a game are clients, they are not authoritative and potentially only have a subset of the 
world at any one time.  Each client is associated with a player (owner).
---
The Unreal model also supports a “meta-participant”: The listen server (aka Host player), which combines the 
Server and Client participation roles into one - this is a single instance of the game running (not just a server and 
a client running on one machine).



Participants

Server

First of all, we have participants.

The first participant is always the server.  The server is the definitive, or authoritative instance of the game world.  
Where different machines disagree, the server is the one that is always assumed to be correct.  Furthermore, the 
server has additional workload in this model, and is of course, the hub for all communication.
---
All other participants in a game are clients, they are not authoritative and potentially only have a subset of the 
world at any one time.  Each client is associated with a player (owner).
---
The Unreal model also supports a “meta-participant”: The listen server (aka Host player), which combines the 
Server and Client participation roles into one - this is a single instance of the game running (not just a server and 
a client running on one machine).



Participants

Server

Client(s) 

First of all, we have participants.

The first participant is always the server.  The server is the definitive, or authoritative instance of the game world.  
Where different machines disagree, the server is the one that is always assumed to be correct.  Furthermore, the 
server has additional workload in this model, and is of course, the hub for all communication.
---
All other participants in a game are clients, they are not authoritative and potentially only have a subset of the 
world at any one time.  Each client is associated with a player (owner).
---
The Unreal model also supports a “meta-participant”: The listen server (aka Host player), which combines the 
Server and Client participation roles into one - this is a single instance of the game running (not just a server and 
a client running on one machine).



Participants

Server

Client(s) 

Also: Listen Server (aka Host)
Server & Client Combined

First of all, we have participants.

The first participant is always the server.  The server is the definitive, or authoritative instance of the game world.  
Where different machines disagree, the server is the one that is always assumed to be correct.  Furthermore, the 
server has additional workload in this model, and is of course, the hub for all communication.
---
All other participants in a game are clients, they are not authoritative and potentially only have a subset of the 
world at any one time.  Each client is associated with a player (owner).
---
The Unreal model also supports a “meta-participant”: The listen server (aka Host player), which combines the 
Server and Client participation roles into one - this is a single instance of the game running (not just a server and 
a client running on one machine).



Unreal Object Model

Object rooted single inheritance class 
hierarchy

Object graph with explicit ownership

Event driven

Actor as base class for network aware 
objects

Secondly - the basics of the unreal model, before going into the details of how it’s used to create shared realities, 
are as follows:

There is an object model, using a single inheritance type hierarchy, with the object instances having explicit child/
parent ownership relationships.

Execution of code is triggered by game engine events - for example a game “tick” (or frame) is an event that is 
triggered for every object in the model, every frame.  The tick event is passed the amount of time that has passed 
since the last frame, thus giving every object in the model an opportunity to run periodic code.

Within the class hierarchy there is an Actor class, which is the base class for all potentially networked objects.



Actor Relevancy

Determined by the Server for each Client

Relevant Actors are Replicated & Run

Thirdly there is actor relevancy.  Given that clients potentially only see a sub set of the world, how is that subset 
decided? 

The answer is that the SERVER determines actor relevancy for each of the clients participating in the game.

Relevancy determination can be totally customised; though the default relevancy conditions cover most needs.  I’ll 
have a quick look at some of the details of that in a moment.

Server tells each client when an actor become relevant to them (creating an “actor channel”), and the client spawns 
an actor of that class (default properties), and keeps them active (events) so long as they remain relevant.  



Actor Relevancy

Owned by the client

Visible or recently visible

Flagged as always relevant 
(bAlwaysRelevant)

Customisable by overriding 
IsNetRelevantFor

The purpose of relevancy is to determine a limited subset of actors which the client needs to know about, so that 
bandwidth is not wasted sending information about objects the client cannot see or interact with.

Sensible default behaviour for most actor classes is built in, but can be customised per object, or overriden on a 
per class basis.

This is powerful & important point of customisation for objects in the Unreal networking model.



Actor Roles

Role & Remote Role

Relative & Symmetric

In addition to relevancy, actors have Roles.  Their roles are defined as a pair of values, “Role” and “Remote Role”.

I describe these as Relative, since their value changes depending on their context (that is which participant is 
asking the question, and in the case of the server, during replication - which I'll come to later - which client they 
are replicating too).

I say Symmetric, since the two roles actually swap during replication.  The role on the client is set from the remote 
role on the server, and the remote role on the client, is the same as the role on the server.



Actor Roles

Authority
ROLE_Authority

Autonomous Proxy
ROLE_AutonomousProxy

Simulated Proxy
ROLE_SimulatedProxy

None
ROLE_None

The values that this pair of members can have are as follows:

Authority -> 
  For any given actor, it’s role can be authority on only one participant. 
  Everything on the Server has the role Authority

Autonomous -> Locally Controlled by non-server Client (ie Player Pawn and his Controller)

Simulated -> Pawns controlled by “other” participants, can only run functions explicitly marked as “simulated”

None -> used for RemoteRole only; actors local to one machine



Communication

Data Replication

Remote Procedure Calls

So, given a system of actors with roles, replicated according to relevancy, how are the actors on the clients kept in 
sync with the server’s view of the game world, and how are the players actions on the client side communicated to 
the server, and the other clients.  What are the communication tools provided by this model, and how are they 
used to maintain the illusion of a responsive shared reality... 

The two core tools used for this are:  Data Replication and Remote Procedure Calls.



Data Replication

One to many, from the server to all client(s)

Controlled by replication statements

Triggers ReplicationEvent via 
repnotify

Newly Relevant actors spawn as defined by 
their “defaultproperties”

The server tells clients what actors are relevant, and replicates their data (according to priority, within the limits of 
bandwidth).

What data is replicated is controlled by replication statements.

Replication triggers events in code.

Data replicated to a client has the potential to overwrite any changes made locally by that client.

Not every state change is replicated immediately, but all replicated data should eventually be synchronised.  This 
mostly only affects values that change multiple times a tick, since replication is done between game ticks, but 
where bandwidth is saturated it may take several seconds for a low priority actor to be updated.



Replication Statement

replication
{    
    if (RemoteRole==ROLE_AutonomousProxy)
       Mana, GuardianMagic;

    if (RemoteRole==ROLE_SimulatedProxy)
       NetAnimInfo, bTraversalInProgress;

    if (NetRagdollMode!=RagdollMode_None)
       RepdRBState;
}

A replication statement consists of conditions, and comma separated member variables.

If the condition is true for the client under consideration, the class variable is replicated.  Replication conditions 
are tested separately by the server for each client.



Replication Statement

replication
{    
    if (RemoteRole==ROLE_AutonomousProxy)
       Mana, GuardianMagic;

    if (RemoteRole==ROLE_SimulatedProxy)
       NetAnimInfo, bTraversalInProgress;

    if (NetRagdollMode!=RagdollMode_None)
       RepdRBState;
}

This example shows an actor that has variables (on the first line) that are only needed on the server & owning 
client - in this case that’s the magical energy the player has, and which magical defence he has available.  Neither 
of which are seen by other players.



Replication Statement

replication
{    
    if (RemoteRole==ROLE_AutonomousProxy)
       Mana, GuardianMagic;

    if (RemoteRole==ROLE_SimulatedProxy)
       NetAnimInfo, bTraversalInProgress;

    if (NetRagdollMode!=RagdollMode_None)
       RepdRBState;
}

It also shows data that is only replicated to clients where the pawn is being simulated - data needed for the 
animation system to show the players actions correctly, data that is set up by the controlling client and passed to 
the server using RPC, which we’ll come to shortly.



Replication Statement

replication
{    
    if (RemoteRole==ROLE_AutonomousProxy)
       Mana, GuardianMagic;

    if (RemoteRole==ROLE_SimulatedProxy)
       NetAnimInfo, bTraversalInProgress;

    if (NetRagdollMode!=RagdollMode_None)
       RepdRBState;
}

Finally, it shows a condition not tied to roles, but to actor state - rigid body physics data only needs to be sent 
when the actor is in ragdoll.



Replication Events 

var repnotify Pawn OwnerPawn;

simulated event ReplicatedEvent(name VarName)
{
 if (VarName == 'OwnerPawn')
 {
        AttachToOwner();
 }
}

For any member variable we can also have the engine fire off events when replicated data arrives at the client, by 
marking the member as “repnotify”.

For instance, in this example, taken from the UTJumpBootEffect, the replication event is used to trigger the 
creation of particle effects on clients in the AttachToOwner function.



Remote Procedure Calls

RPCs are built into the scripting language directly, using a simple function declaration syntax.

It supports:
 server functions, where the client sends a message to the server

And
 client functions, where the server sends a message to the client

For client functions, the object ownership hierarchy determines which client a messages get sent to
---
UnrealScript also requires the function declaration to specify the whether the RPC needs to be reliable, or can be 
sent via an unreliable transport.



Remote Procedure Calls

server functions

client functions

RPCs are built into the scripting language directly, using a simple function declaration syntax.

It supports:
 server functions, where the client sends a message to the server

And
 client functions, where the server sends a message to the client

For client functions, the object ownership hierarchy determines which client a messages get sent to
---
UnrealScript also requires the function declaration to specify the whether the RPC needs to be reliable, or can be 
sent via an unreliable transport.



Remote Procedure Calls

server functions

client functions

unreliable functions

reliable functions

RPCs are built into the scripting language directly, using a simple function declaration syntax.

It supports:
 server functions, where the client sends a message to the server

And
 client functions, where the server sends a message to the client

For client functions, the object ownership hierarchy determines which client a messages get sent to
---
UnrealScript also requires the function declaration to specify the whether the RPC needs to be reliable, or can be 
sent via an unreliable transport.



Example

unreliable server function 
ServerSendGroundSpeed(float newspeed)
{
    Pawn.GroundSpeed = newspeed;
}

A server function only executes locally if the actor’s role is “Authority”

On a client (where Role < Authority) the function “call” wraps up a packet with the function arguments, and sends 
it to the server.  It is not executed locally, and returns immediately.  If a function invokes RPC and  has a return 
value it will be none or zero. 

The function is then executed on the server (in between ticks), once the packet has arrived.

Since there is no call context on the server, the return value is not used, nor is it passed back to the client, so 
server functions do not tend to have return values.



Example

reliable client function 
OnAttackBlocked(Pawn by)
{
 CombatTree.OnAttackBlocked(by);
}

This example shows a client function, in this case, used by the server to tell a client that his attack has been 
blocked.

A client function runs locally if the actor it is a member of is owned (recursively up the graph) by the locally 
controlled pawn/player controller.  If the owning pawn is being autonomously controlled by a client the server 
creates an RPC packet describing the call and sends it to that client, where it is executed on arrival.

If the function is called on a simulated actor, it is just ignored.

If a client function is passed an Actor reference which is not relevant or not (yet) replicated on the destination 
client it gets resolved (de-serialised) as “none” (null) on the client.



Reliable vs Unreliable

reliable - always sent

unreliable - sent bandwidth permitting

Functions replicated with the unreliable keyword are not guaranteed to reach the other party and, if they 
do reach the other party, they may be received out-of-order. 
In practice the only things which can prevent an unreliable function from being received are network packet-
loss, and bandwidth saturation.
Reliable functions should be used for sending information about game state change events, specifically 
player actions.
Unreliable functions should be used rarely - their main role is when sending regular but low priority value 
updates to the server.  For most uses reliable functions should be preferred.  



Communication Patterns

Local / Server / Net

Execute on ReplicatedEvent

So given these two primary tools - controlled replication of game state from server to client, and remote 
procedure calls from server to client and client to server, how do we use them in practice.

Whilst working with the unreal network model, I’ve identified 2 very common communication patterns, which are 
useful for understanding how the tools are used.



Local / Server / Net

Local / Server / Net

Local_foo -> implements the state change

Server_foo -> a reliable server 
function, calls Local_foo

Net_foo -> calls Local_foo, and if 
(Role<Role_Authority) Server_foo

This pattern is used when an action by the player can cause a state change, which needs to be duplicated on the 
server and seen by the player without them waiting for a network round trip.

A simple function with no RPC specifications is created to implement the state change, by convention I prefix this 
with “Local”.

A reliable server function is created named with the prefix Server, which simply calls Local_foo.  By doing this we 
separate the implementation of the state change from the mechanism for RPC.

A 3rd function, prefixed Net, is created that calls both Local_foo and, if needed, Server_foo.



Target Lock-on

This is a Player Controller example from our game

showing the Local / Server / Net pattern - “Local” implements the state change, the server function makes sure 
the same state change happens on the server, and the “Net” function acts as a general front to the function that 
ensures the right calls are made depending if it was called on the client, or on the server.

When the player target-locks an enemy they see the consequences of their action immediately in game, without 
lag, and inform the server of the change.

If other clients, where this player is a simulated pawn, need to see the results of this action then that would need 
to be implemented separately via data replication.

The Local/Server/Net pattern is a Client to Server synchronisation pattern for keeping the server up to date, whilst 
avoiding client action lag.



Target Lock-on
private function LocalSetLockOnTarget(Pawn t)
{
    // ... 
}

This is a Player Controller example from our game

showing the Local / Server / Net pattern - “Local” implements the state change, the server function makes sure 
the same state change happens on the server, and the “Net” function acts as a general front to the function that 
ensures the right calls are made depending if it was called on the client, or on the server.

When the player target-locks an enemy they see the consequences of their action immediately in game, without 
lag, and inform the server of the change.

If other clients, where this player is a simulated pawn, need to see the results of this action then that would need 
to be implemented separately via data replication.

The Local/Server/Net pattern is a Client to Server synchronisation pattern for keeping the server up to date, whilst 
avoiding client action lag.



Target Lock-on
private function LocalSetLockOnTarget(Pawn t)
{
    // ... 
}

reliable server function ServerSetLockOnTarget(Pawn t)
{
    LocalSetLockOnTarget(t);
}

This is a Player Controller example from our game

showing the Local / Server / Net pattern - “Local” implements the state change, the server function makes sure 
the same state change happens on the server, and the “Net” function acts as a general front to the function that 
ensures the right calls are made depending if it was called on the client, or on the server.

When the player target-locks an enemy they see the consequences of their action immediately in game, without 
lag, and inform the server of the change.

If other clients, where this player is a simulated pawn, need to see the results of this action then that would need 
to be implemented separately via data replication.

The Local/Server/Net pattern is a Client to Server synchronisation pattern for keeping the server up to date, whilst 
avoiding client action lag.



Target Lock-on
private function LocalSetLockOnTarget(Pawn t)
{
    // ... 
}

reliable server function ServerSetLockOnTarget(Pawn t)
{
    LocalSetLockOnTarget(t);
}

function NetSetLockOnTarget(Pawn t)
{
    ServerSetLockOnTarget(t);
    if (Role < Role_Authority)
    {
        LocalSetLockOnTarget(t);
    }
}

This is a Player Controller example from our game

showing the Local / Server / Net pattern - “Local” implements the state change, the server function makes sure 
the same state change happens on the server, and the “Net” function acts as a general front to the function that 
ensures the right calls are made depending if it was called on the client, or on the server.

When the player target-locks an enemy they see the consequences of their action immediately in game, without 
lag, and inform the server of the change.

If other clients, where this player is a simulated pawn, need to see the results of this action then that would need 
to be implemented separately via data replication.

The Local/Server/Net pattern is a Client to Server synchronisation pattern for keeping the server up to date, whilst 
avoiding client action lag.



Execute on 
ReplicatedEvent

Trigger variable marked as repnotify

Server changes the variable & replicates 
that change to clients

ReplicatedEvent on clients triggers execution 
of the required code

Execute on replicated event is a method for triggering the execution of code on any client that receives a value 
change via replication.

Its useful for spawning local objects, such as mesh attachments or particle effects that either do not need to exist 
on the server, would be to expensive to fully replicate and/or do not have to be kept in detailed sync.

We use this pattern to spawn weapon attachment and armour meshes, by replicating the attachment class type, 
and spawning an object of that type locally if the replicated value is a different type to the one we have currently 
on that client.

The UTJumpBootsEffect is an example of this pattern.



Examples

Temporary Effect: UT Jump Boots

Combat Collision in our current project



UT JumpBoots
/** pawn to spawn effects for */
var repnotify UTPawn OwnerPawn;

replication
{
    if (bNetInitial)
        OwnerPawn;
}

An event function in UTJumpBoots (an inventory item) spawns the UTJumpBootEffect on the server.

In the PostBeingPlay event (called on the server after an instance of the object is spawned) the OwnerPawn variable is set.  This is 
a replicated variable (its listed in the replication statement) and its marked as repnotify.  The PostBeingPlay also calls the 
AttachToOwner function.  It is AttachToOwner that spawns the actual particle effects.

The ReplicatedEvent is triggered when the OwnerPawn is replicated to a client.  That is used to trigger a call to AttachToOwner 
on each of the clients the object is replicated too.

As a diagram. the yellow circle represent the visible particle effect.  It appears in the server column to show the case of a listen server, 
there is a specific condition tested to prevent that from actually happening on a dedicated server.

Note it is bNetTemporary=true, meaning that after initial replication, the Actor channel is closed and the Actor is never updated 
again. The actor will be destroyed by client once it's LifeSpan (0.2) has expired.



Our Combat Collision

Collision detection client side

reliable server function sends hit to server, 
simulates the hit locally

Server verifies & replicates a hit “packet”

repnotify used to simulate the hit on non-
originating clients

Most hit consequences are simulated 

On my current project we are working hard to create a co-op multiplayer game, with the control responsiveness 
and collision accuracy of an arcade beat-em-up.  To that end we’ve taken special care over how our combat 
collision system works, since up to 4 players can be swinging weapons in close proximity.  

We’ve put the collision detection itself on the client, so that it frame-for-frame matches what the controlling 
player sees.  Hits are passed to the server, and and hit-results are immediately simulated on the client.  This is 
possible because any differences in the results on server and originating client are corrected automatically via 
replication.

Other clients that should see the hit & it’s consequences do so during the repnotify event, when the “hit packet” is 
replicated back out by the server.



Limitations and 
Workarounds

Client to Client Messages

Multicast RPC

Passing Interfaces across the network

Changing Replication Conditions

Subclassing for repnotify

Having gone through how the unreal networking model is set up, and what synchronisation tools it provides, along 
with some examples of how it can be used, I’d like to now review some if it’s limitations, and how they are avoided 
or worked around.

The first 3 are relatively simple to work around, as long as you are aware of them.

The last 2 can be more serious design constraints.



Client to Client 
Messages (RPC)

All client to client communication goes via 
the server:
reliable client function ReceiveP2P( ... )
{ ... }

reliable server function SendP2P( Pawn to, ... )
{ to.ReceiveP2P( ... ); }

Client to client communication is not directly supported, but - as with all client/server architectures, the 
functionality can be easily supported by routing any client-to-client messages via the server.

Remember all clients in the game are associated with a player-controller, so that to make a remote procedure call 
from client A to client B you need a pair of functions in the player controller class, one server and one client, as 
shown here.  

Client A makes a remote procedure call to the server by calling SendP2P, which in turn calls the client function 
ReceiveP2P, resulting in the code being executed on the client controlling the target player controller.



Multicast RPC

From the server, manually call the (client) 
function on each of the player controllers:
foreach PlayerController
    target.Function(...) //reliable client function ...

example: GameInfo.Broadcast()

Similarly multi-casting an RPC from the server to all clients requires you explicitly call a client function for each 
participant.

There is an example of this in the unreal GameInfo class.

Though in I’d advise against this use of RPC, and favour data replication, since over use of remote procedure calls 
can saturate your bandwidth.



Passing Interfaces 
Across the Network

Interfaces are not Actors
interface IFoo extends Interface;
// ...
simulated function LocalDoFooThing( IFoo foo ) {...}
simulated function NetDoFooThing( IFoo foo )
{
  LocalDoFooThing( foo );
  if( Role < Role_Authority )
  {
    ServerDoFooThing(foo);
  }
}

For those of you unfamiliar with UnrealScript, interfaces here are similar to interfaces in .NET or Java, and provide 
a mechanism similar to multiple inheritance in C++.

That is, they allow objects of different types to share common sets of functions, and be passed around as if the 
interface was a type itself.

So, given we have an some types that share an interface and we need to support player actions on those objects, 
we start to implement the Local / Server / Net pattern, like so -

- this slide shows the Local and Net parts of that, which will work as expected.



Passing Interfaces 
Across the Network

Unfortunately, for an object to be relevant at all it must be an Actor, and Interfaces are not necessarily Actors, 
thus this first attempt at implementing the “Server” part of the pattern will only ever pass “none” to the Local 
function on the server side.

So, since Actors are the base class for all network aware objects, where an object of uncertain hierarchy can be 
legitimately passed across the network it MUST be an Actor, so we can pass it as an Actor, and then cast back to 
the interface we know it supports on the other side of the connection.

Thus, we end up with the “Server” part looking like this, with it’s argument being an Actor, and a cast back to the 
interface we know this actor supports inside the implementation.  



Passing Interfaces 
Across the Network

Interfaces are not Actors
// doesn't work (foo==none always):
reliable server function ServerDoFooThing( IFoo foo )
{ LocalDoFooThing(foo); }

Unfortunately, for an object to be relevant at all it must be an Actor, and Interfaces are not necessarily Actors, 
thus this first attempt at implementing the “Server” part of the pattern will only ever pass “none” to the Local 
function on the server side.

So, since Actors are the base class for all network aware objects, where an object of uncertain hierarchy can be 
legitimately passed across the network it MUST be an Actor, so we can pass it as an Actor, and then cast back to 
the interface we know it supports on the other side of the connection.

Thus, we end up with the “Server” part looking like this, with it’s argument being an Actor, and a cast back to the 
interface we know this actor supports inside the implementation.  



Passing Interfaces 
Across the Network

Interfaces are not Actors
// doesn't work (foo==none always):
reliable server function ServerDoFooThing( IFoo foo )
{ LocalDoFooThing(foo); }

// foo MUST to be an actor 
// even if your working on it as an IFoo on both sides
reliable server function ServerDoFooThing( Actor foo )
{ 
   // casting is usually bad practice, 
   // but it's a necessary work around here
   LocalDoFooThing( IFoo(foo) );
}

Unfortunately, for an object to be relevant at all it must be an Actor, and Interfaces are not necessarily Actors, 
thus this first attempt at implementing the “Server” part of the pattern will only ever pass “none” to the Local 
function on the server side.

So, since Actors are the base class for all network aware objects, where an object of uncertain hierarchy can be 
legitimately passed across the network it MUST be an Actor, so we can pass it as an Actor, and then cast back to 
the interface we know it supports on the other side of the connection.

Thus, we end up with the “Server” part looking like this, with it’s argument being an Actor, and a cast back to the 
interface we know this actor supports inside the implementation.  



Changing Replication 
Conditions

Defined in the class that defines the variable

Native Replication
GetOptimizedRepList

Where as the previous 3 limitations are easily worked around, this one is not.

Since the replication conditions for a variable must be defined in the class that declares the member variable, there 
is no way to change that for sub class from scripts, instead you need to use native-replication, which involves 
overriding the GetOptimizedRepList in C++.  

This is not for the faint hearted.



Subclassing repnotify

repnotify is part of the variable 
declaration

Add it to the base class

To remove - override ReplicationEvent and do 
not pass up back up to the base

Similarly, the triggering of events on replication, via repnotify, is not something that can be changed from a sub 
class, since it is part of the variable declaration.  

If you need to ADD an event, however, this can easily be done by changing the base class, and doing so has little 
or no negative repercussions.

If you need to prevent an event you could override the ReplicationEvent in your sub class, and not chain the call up 
to the base class.  This doesn’t strictly prevent the event from being triggered, but does prevent it from being 
handled.

Be warned however, that this may have unexpected repercussions and could result in more refactoring than you 
expected.



Summary



Summary

Object Oriented Simulation

Generalised Server / Client



Summary

Object Oriented Simulation

Generalised Server / Client

Data Replication

Remote Procedure Calls (RPC)



Further Reading

https://udn.epicgames.com/Three/
NetworkingTome



Q&A

Any Questions?


